Loglinear models for rst-order probabilistic reasoning

نویسنده

  • James Cussens
چکیده

Recent work on loglinear models in proba-bilistic constraint logic programming is applied to rst-order probabilistic reasoning. Probabilities are deened directly on the proofs of atomic formulae, and by marginal-isation on the atomic formulae themselves. We use Stochastic Logic Programs (SLPs) composed of labelled and unlabelled deenite clauses to deene the proof probabilities. We have a conservative extension of rst-order reasoning, so that, for example, there is a one-one mapping between logical and random variables. We show how, in this framework, Inductive Logic Programming (ILP) can be used to induce the features of a loglinear model from data. We also compare the presented framework with other approaches to rst-order probabilistic reasoning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loglinear models for first-order probabilistic reasoning

Recent work on loglinear models in probabilistic constraint logic programming is applied to firstorder probabilistic reasoning. Probabilities are defined directly on the proofs of atomic formulae, and by marginalisation on the atomic formulae themselves. We use Stochastic Logic Programs (SLPs) composed of labelled and unlabelled definite clauses to define the proof probabilities. We have a cons...

متن کامل

Knowledge Presentation and Reasoning with Loglinear Models

Veska Noncheva, Nuno Marques Abstract: Our approach for knowledge presentation is based on the idea of expert system shell. At first we will build a graph shell of both possible dependencies and possible actions. Then, reasoning by means of Loglinear models, we will activate some nodes and some directed links. In this way a Bayesian network and networks presenting loglinear models are generated.

متن کامل

Special Issue on Knowledge Representation and Machine Learning Five Useful Properties of Probabilistic Knowledge Representations from the Point of View of Intelligent Systems

Although probabilistic knowledge representations and probabilistic reasoning have by now secured their position in artiicial intelligence, it is not uncommon to encounter misunderstanding of their foundations and lack of appreciation for their strengths. This paper describes ve properties of probabilistic knowledge representations that are particularly useful in intelligent systems research. (1...

متن کامل

Five Useful Properties of Probabilistic Knowledge Representations From the Point of View of Intelligent Systems

Abst ract Although probabilistic knowledge representations and probabilistic reasoning have by now secured their position in artiicial intelligence, it is not uncommon to encounter misunderstanding of their foundations and lack of appreciation for their strengths. This paper describes ve properties of probabilistic knowledge representations that are particularly useful in intelligent systems re...

متن کامل

Coherence and Compatibility of Markov Logic Networks

Markov logic is a robust approach for probabilistic relational knowledge representation that uses a log-linear model of weighted first-order formulas for probabilistic reasoning. This loglinear model always exists but may not represent the knowledge engineer’s intentions adequately. In this paper, we develop a general framework for measuring this coherence of Markov logic networks by comparing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999